Conen Matu Prep: Reeentr Review Series

Linear Equations

*Defined by: constant rate of change AKA slope Slope-Intercept Form:

Point-Slope Form:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Slope Between 2 Points:

$$
\mathrm{m}=\frac{\downarrow}{\longleftrightarrow}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Parallel Slopes
$m_{\|}=m$
VS.
Perpendicular Slopes

$$
m_{\perp}=-\frac{1}{m}
$$

Types Of Number

- Natural \#'s: $\{1,2,3, \ldots\}$
- Whole \#'s: $\{0,1,2,3, \ldots\}$
- Integers: $\{\ldots-3,-2,-1,0,1,2,3, \ldots\}$
- Rational \#'s: Ratio of any 2 integers ' a ' and ' b ' (in the form: $\frac{a}{b}$)
- Irrational \#'s: Not rational... "weird" \#'s like: $\pi, \sqrt{2},-\sqrt{6}, e$
- Real \#'s: The set of all Rationals \& Irrationals

3 Methods to "Solve" Quadratic Equations:

* "Solutions" AKA: "roots", "zeros", or x-intercepts"

1) Factoring (easiest method when possible)

* $0=(x-m)(x-n) \Leftrightarrow x=m \quad \& \quad x=n$
* if solving an equation in the form: $0=x^{2}+b x+c$ find ' m ' and ' n ' such that: $m \cdot n=c$ \& $m+n=b$
* remember difference of squares: $x^{2}-m^{2}=(x+m)(x-m)$

2) Completing the Square

$$
x^{2}+b x=c \Longrightarrow\left(x+\frac{b}{2}\right)^{2}=c+\left(\frac{b}{2}\right)^{2}
$$

(1) $b^{2}-4 a c>0$

2 Real Solutions
$2 b^{2}-4 a c=0$
1 Real Solution
(3) $b^{2}-4 a c<0$

No Real Solutions

Conen Math Prep: Recents Review Series

FUNCTIONS

Definition: only 1 output per input

Domain: set of all possible inputs (x 's)
Range: set of all possible outputs (y's)

* $\quad f(x)$: means " f of x " ... same as $\mathrm{y} . .$. NOT " f times x "

SEQUENCES

Arithmetic Sequence: (Generating each term by addition)

$$
\begin{aligned}
& \text { 1st 2nd 3rd } \quad \boldsymbol{a}_{3}, \ldots, \boldsymbol{a}_{n-1}, \boldsymbol{a}_{n}, \boldsymbol{a}_{n+1} \\
& \text { 1 before "nth" } 1 \text { after } \\
& \text { term term term } \quad+\boldsymbol{a}_{2}, \boldsymbol{a}_{3} \\
& \text { nth term term nth term }
\end{aligned}
$$

Explicit Formula:
Recursive Formula:
$a_{n}=a_{1}+d(n-1)$

$$
\begin{aligned}
& a_{n}=a_{n-1}+d \\
& \quad \text { or } \\
& a_{n+1}=a_{n}+d
\end{aligned}
$$

Geometric Sequence: (Generating each term by multiplication)

$$
\overbrace{a_{1}}^{\cdot r} \overbrace{a_{2}}^{\cdot r}, a_{3}, \ldots, a_{n-1}, a_{n}, a_{n+1}
$$

Explicit Formula:
$a_{n}=a_{1} \cdot r^{n-1}$

Recursive Formula:
$a_{n}=a_{1} \cdot r$
or
$a_{n+1}=a_{n} \cdot r$

Correlation Coefficient (r): Tells how close a best fit curve is to the data in a scatterplot of bivariate data (2 variable) $-1<r<1$

